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Abstract—Building a high performance classifier requires
training with labeled data, which is supervised and allows
generalizing the classifier’s decision boundary and in practice
most of the data is unlabeled, newer algorithms needs to
be learn by knowledge discovery. Sufficient training data
are collected in the form of empirical evidence, which
have labeled positive and negative samples to build the
hypothesis. The hypothesis is constructed by the conjunc-
tion of the attributes, which can be learnt by machine
learning algorithm. In this paper, we work with two forms
of ranking weights, precision and relevance, which help
in finding hidden patterns and prediction future events.
Empirical evidence for a weather patterns and tracking of
a phenomenon needs to accurately extract the attributes
and label the training samples, which is a very laborious
and time-consuming effort. Automating weather prediction
algorithms, which are trained by supervised learning, needs
to be generalized so that it can be tested with unreliable and
noisy weather data from low-cost sensors. We use a training
data from previous forest fires events, the datasets containing
all the attributes are labeled using manual data logs for
a given geographical area. The labeled original dataset is
mapped to the data collected from on-line sensors, which
further improves the accuracy of the training set. As some
of classes have very few samples, which are related to the
peak fire seasons, domain specific knowledge are added by
sensor measurements and Fire Weather Index (FWI) to help
accurately model the events. We show that training accuracy
of the small forest fire classifier using attributes from manual
logs is enhanced by 30% by using sensor data. The rare
and hard to classify large forest fires are 95% accurately
classified by using the new Fire Weather Index (FWI). We
also show that our framework is more robust to outliers
from noisy sensor measurements by accounting for in the
model parameters. The model allows further generalization
for linearly and non-linearly separable datasets by estimating
the parameters (1 − δ) and minimum allowable error ε for
hypothesis, sampling accuracy and cross validation.

Index Terms—Sampling sensors, Data mining, Machine
Learning, Ranking functions, Knowledge discovery, Event
Modeling, Forest fires, FWI, Temporal Patterns, Sensor Net-
works.

I. INTRODUCTION

Data obtained from weather stations have high di-
mensionally and are very noisy, often designed with
remote sensing as the primary objective. These systems
are not suitable for accurate monitoring and tracking
of the weather data and a detail modeling is necessary
to adapt such systems to help track and predict future

events accurately. To express the features of the original
problem in a linear space, the dataset is transformed into
a vector into a higher dimension, which helps to separate
different categories and learn the coefficients of the
classifier’s decision boundary. These coefficients are then
applied to the original dataset dimension space with the
estimated model bias and variance to predict new test
cases. Algorithms like linear discriminant analysis (LDA)
and Principal Component Analysis (PCA) have been
used to pre-process large datasets to efficiently select
only relevant attributes, which help better represent
the model avoiding data redundancies. This allows the
designed algorithms to perform well as the complexity
of computation is reduced, in a similar manner we
use statistical techniques to sample the training data so
that only fewer features are sufficient to reproduce the
variation in the input signal. Weather model assumes
the temporal features sets are highly correlated and does
not follow the normal assumptions of independently
identically distributed (i.i.d) sampling. Combination of
attributes to learn the concept hypothesis without over-
fitting the data helps better performance during testing.

The performance of the classifier can be evaluated in
terms of how well the algorithm generalizes the decision
boundary for a given training set data, so it performs
well during the testing. In our case the testing samples
are generated by low-cost sensors with a given accuracy,
which is determined by the number of sensors and
the noise level. If the accuracy is defined as (1 − δ)
and the minimum error allowed ε, then a cost function
matrix [8] can be used in the classification to further
model the false alarm rates. The model uses temporal
features and correlated sensor measurements to better
model the target function of fire activity. The cause of
high error rates are due to overlap in class densities in
the original feature space [12], transforming to a higher
dimension feature space allows better approximation in
such cases. As the model assumes linear separability
of the dataset, due to errors the weights are no longer
linearly dependent, appropriate polynomials kernels are
used to defined the decision boundary. The accuracy
performance bench marking is carried out for different
classifiers and the scores are compared with kappa score
and misclassification error rates. To further, investigate
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(a) Empirical log collection. (b) Four class classification. (c) F-score for temporal features.

Fig. 1. Histograms of empirical fire activity and its labeled class categories showing F-score.

dependent factors that can cause such fires, we include
statistics, which are the number of visitors and traffic
patterns coming into the forest area. This adds to the
model the knowledge of temporal activity, measurable
temporal patterns and operating thresholds useful in
fighting fire events.

The rest of the paper is organized as section II and
III provides background and related work. Section III
introduces ranking of the original dataset with the help
of machine learning and section IV introduces Data
Mining and the use of inexpensive sensors to increase the
reliability of classification of the original dataset. Section
V uses an extended Fire Weather Index dataset, when
the dataset overlaps and is not separable for rate events.
Section VI and VII introduces linear and kernel functions
to address generalization errors and cost based classifica-
tion and discusses the results using WEKA framework.
The paper concludes with a brief summary followed by
acknowledgements in sections VIII and IX.

II. BACKGROUND

Forest fire event detection is of primary importance
to unsupervised data collected from sensor network
deployment in remote areas. The original dataset we
use to conduct experiments are taken from UCI Machine
learning repository [4], which has the number of past fire
events since 1994-2001 for a given park area. The log
contains the fire activity and the number of hectors of
the burn area during the year, selected samples that best
represent the population and it’s geographically relevant
attributes including its frequency is then recorded to
help classify the type of fire.

III. EVENT RANKING USING MACHINE LEARNING

The current event data log used to for forest fires may
be incomplete and how does one know the distribution
knowledge and patterns of events from the data. Rele-
vance factors of fire event concept can be defined for all

fire events that are tagged in the log, as we are interested
in ranking fire occurrences in the record. The inverse
concept precision is calculated from the histogram plot
shown in Figure 1(a), plot shows there are very few
large fires. When reporting on major fire events the most
relevant samples are retrieved, which has a higher rank
leading to a precision score [12,13,20] close to 1.

A. Linear ranking function

To design a good ranking function it needs to balance
the relevance and precision of the events in a way
to express a summable numerical quantity, which is
statistically perfect. The new weights are evaluated for
each fire types and the records, which match the user
query [9] is sorted and returned.

Precision =
number of relevant forest fire events retrieved

number of forest fires retrieved in query

Relevance =
number of relevant forest fire events retrieved

number of relevant forest fires classified

B. F-score based feature performance

The weighted harmonic mean of precision and rele-
vance are used to compare the performance of two class
labels, the traditional F-measure or balanced F-score is
because recall and precision are evenly weighted. Figure
1(c) and Figure 2(c) shows F-score variations with tem-
poral week day attribute. Higher the score the better the
classification accuracy, the sensor dataset shows small
fires are better learnt and the FWI dataset shows the
large fires reliably detectable. The general formula for
non-negative real β is:

Fβ =
2× Precision×Recall

Precision+Recall
(1)
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(a) Negatively correlated. (b) Positively correlated. (c) Performance of large fire.

Fig. 2. Feature correlation for sensor and FWI datasets and large fires are shown with the new FWI F-score.

It is based on van Rijsbergen’s [20] effectiveness E given
by

Alarmrank = 1− 1

α 1
p + (1− α) 1r

We further look into accidental small fires, as they
are very probabilistic and any conceptual link to the
attributes may lead to rank the idea of precision and
relevance of the collection. α− the alarm weight are
calculated based on the reliability of the ground truth,
higher precision weights is given due to prior assump-
tion that large and medium fires are not accidental but
correlated to natural weather patterns. The precision
weight factor for small fires can then be evaluated given
α by (1 − α) for a given burnt area(BA). A continuous
valued function for BA can be defined as

BADays% < 50 ha = θ1 + θ2 ln(NF ) (2)

where θ1 = 2.895 and θ2 = 1.265, which is the variance
of the BA data versus fire activity, showing logarithmic
O(lg(BA) complexity as shown in Figure 1(a).
We a learning the two major categories fire categories,
which are accidental small fires and large wild fires.
To select the performance of the two we use weighted
precision versus relevance to estimate the ranking infor-
mation F@(0.5) for the above equation (1). The F-scores
are calculated and weighted for high reliability by using
F@(0.5), which is twice the precision compared to its
equivalent relevance scale. In equation (1) reliability and
precision are proportionally weighted, while relevance
is inversely proportional. The performance scores shows
in Figure 1(c) for accidental small fires is 3 times higher
when compared to queries for large wild fires or from
the same collection.

C. Performance based on user selectable temporal attributes

Accidental small wild fires are possible all through
the year, making is a viable application for automated
sensor measurements. The measurements such as tem-

perature, humidity and wind gust are automated, while
temporal attributes such as human traffic, day of the
week are used to study the small fire patterns. The
ranking suggest that small fires events are mostly due
to temporal causes such as human traffic and vehicular
routes more than any observed dataset or correlated
sensor measurements.

IV. DATA MINING OF SENSOR DATA

The original dataset described represents the ground
truth, due to unknown data distribution estimating
mean μ, of the original population will lead to errors
as discussed in Definition 3. The initial results shows
that the cause of fire activity is related to temporal
activity, which is hard to measure. To explore related
features of weather and climate data we use previously
collected data from automated logs of sensor network
[1,5]. The attributes which are of interest are tempera-
ture, humidity, rain and wind conditions during the time
of the fire event. The sensors attributed are measured
values and easily available due to existing infrastructure
of weather stations. This data mining approach allows
to add quantitative knowledge to the original dataset
hypothesis, such as a GPS position information to a
weather dataset. To learn the new attributes of the fire
event hypothesis is not very practical in an experimental
setup as sensor data is prone to noise. The measured
attributes are highly correlated and do not follow the
normal independently identically distributed (i.i.d) as-
sumptions of sampling, as described in Definition 1.
To measure correlated sensor measurements of interest,
interval estimates from multiple reading are necessary
and overlap with the i.i.d of other sensors to calculated
the overlap precise interval and range accuracy, as de-
scribed in Definition 2. In an event of a fire event the two
parameters temperature and humidly is shown in Figure
2(a) may not match the expected mean (μ) and variance
(σ). This further does not help the classification accuracy
as both the parameters are uniformly distributed over
all the classes having mean μtemprature = 30. Due to
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Sensor Model Parameters Dataset Accuracy
Experiments Features Training Error δtrainεtrain True Error εsample

Class Attr. Performance SV AF SF MF LF err kappa All classes
Hypothesis 4 3 F-measure 517 17% 17% 0.9% 0.9% - - -
Hypothesis 2 3 Subset 422 62% 62% - - 37% 0.14 56%
DM (NB) 2 6 Sensor 517 84% 30% 7% 0% 48% 0.13 47%
Weka(J48) 4 9 Sensor 517 92% 67% 40% 29% 28% 0.53 47%

Weka(SVM) 4 9 Sensor 480 97% 93% 94% 96% 3% 0.95 45%
Weka(SVM) 4 9 Poly Kernel 411 95% 93% 94% 95% 5% 0.90 49%
Class=Multi-class Attr=No. of attributes SV=Support Vectors AF=Accidental Fire SF=Small Fire MF=Medium Fire LF=Large Fire

err=Misclassification kappa=score

TABLE I
F-SCORE PERFORMANCE WHEN USING SENSOR DATASET.

this shortcoming fire activity related parameters are also
needed to predict, the FWI dataset discusses these model
issues, which has unique class μ.

Measurements 1 The sensor network model measurement
matrix maintains i.i.ds, as there are lots of correlated readings
a sparse model is used for a collection of sensor. The collection
x = Pθ is for all possible basis representation, which can be
measured with an allowable error is called the sparsity model.

Measurements 2 The sparsity measurement matrix main-
tains non-overlapping subsets, which are present in all signals
and among all cost (bits) level representation X = PΘ of the
processed signal. The non-overlapping coefficients represents
the basis, which is the lossless representation of the measured
signal ensemble.

Definition 1 Interval estimate-Computation: For a given
ensemble X , we let PF (X) ⊆ P denotes the set of feasible
location matrices P ∈ P for which a factorization X = PΘ
exits. We define the joint sparsity levels of the signal ensemble
as follows. The joint sparsity, level D of the signal ensemble
X is the number of columns of the smallest matrix P ∈ P.
In these models each signal xj is generated as a combination
of two components: (i) a common component zC , which is
present in all signals, and (ii) an innovation component zj ,
which is unique to each signal. These combine additively, giv-
ing xj = zC+zj , j ∈ ∀. X = PΘ. A further optimization can
be performed to reduce the number of measurement made by
each sensor, the number of measurement is now proportional
to the maximal overlap of the inter sensor ranges and not a
constant. This are similar to training accuracy and errors of
the original weather samples obtained by local stations. This
is calculated by the common coefficients Kc and Kj , if there
are common coefficients in Kj then one of the Kc coefficient is
removed and the common Zc is added, these change does not
affect the reconstruction of the original measurement signal x.

A. Correlated features

The original samples of the fire events are sorted in
terms of BA in hectors(ha), the frequency distribution
versus BA is shown in Figure 1 and its parametric model
is given earlier in equation (2). The parameters θ1, θ2
are found using linear regression techniques it is still

difficult to build and relate to weather model. We can
model the BA distribution in equation (3) in terms of a
dependent function f(x), which uses weather attributes
as given in equation (4) and equation (5). This is the first
integration of the weather model to the prior fire activity,
this model not only classifies the training set but allows
to continuously monitor and predict fire activity using
inexpensive sensors over wireless networks.

BA = f(x) (3)

B. Labeling BA in hectors.

The histogram shows that the BA is skewed with large
number of small fires and very few large fires, predicting
likelihood of small fires learnable. We further classify
fires into four categories, which allows to compare the
performance of the system in terms of precision and
relevance. The Figure 1(b) shows the new histogram of
the BA in terms of four class labels, which are used in
the prediction of new weather samples obtained from
the local sensors. The accuracy of classifying fire events
in the training set with limited feature set is only 52%.

C. Estimating BA with temporal and correlated attributes

The total number of independent variables in the fire
activity target function is seven as given in equation (6).

Vtrain(FireEventDay of week)← (4)

V̂ (FireEventDay of week)Temporal Variable +

V̂ (FireEventDay of week)Correlated measurements

Temporal Variables = Month of the year + (5)
Day of the week

Correlated measurement = temperature + (6)
humidity + wind + rain

Classfires = {accidental; small; medium; large}

D. Classifying the fire event hypothesis

To train the original hypothesis with more available
features we use the 517 rule sets from UCI forest fire
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FWI TYPES Measure(norm) Training set Class μ

Low (AF) 0-8 0-8 31.7
Medium (SF) 8-13 8-13 33.2

High (MF) 13-32 13-39 33.4
Very High (LF) 32 > FWI < 80 39 > FWI < 43 36.8

(a) Temperature temporal distribution. (b) FWI class label thresholds. (c) FWI temporal distribution.

Fig. 3. New classification of large fires based on ISI = WIND + FFMC and BUI = DMC +DC calculated as one FWI index.

repository. The weather attributes, which are numerical
are converted into nominal [6,20] types, as given below.

temperature = {cool;mild;hot}

humidity = {normal;high}

wind = {true; false}
The model estimation of the target function with weights
w1, w2 as shown allows to linearly separate in the feature
space.

V̂ = w1x1 + w2x2 (7)

The learning algorithm adjust the weights [6] for the
misclassified samples using gradient decent techniques
to find the local minima as shown in Figure 2(a) for
sensor dataset. The the weights to minimizing the error
and misclassifications as shown below.

E ≡
m∑
i=0

(Vtrain(FireEvent)− V̂ (FireEvent))2 (8)

The expected new design of the classifier increases the
classification accuracy of the baseline as shown in Table
I from 62%to 84% in the case of small fire prediction.
The test performance is marginal in terms of large fires
with an accuracy of 7%.

V. CLASSIFICATION OF A SKEWED DISTRIBUTION

In the previous section the small fires errors for nor-
mally distributed features could be reduced using higher
dimensional feature space. In this section we try to
learn events, which are temporal and also has a skewed
distribution. The Canadian Fire Weather Index (FWI)
[11] data allows to precisely predict large fires. FWI is
calculated using Initial Spread Index(ISI) and Build Up
Index(BUI), which take into account the fuel type such
as pine accumulated in the ground. The fire index has
two independent components, one which is the ground

cover build up over time and the other the spread non-
linear spread or fire risk factor as given in equation (9).
Which indicate fire behavior and respectively represent
rate of fire spread, fuel consumption and fire intensity
and can be class labeled as given in Figure 3(b).

A. Temporal correlation of FWI features

All FWI indexes are significantly correlated with the
number of fires and the burned area, specially when
BA > 100 is the area classified as large fires. The average
FWI index variation during the year and corresponding
temperature is shown in Figure 3(a) and Figure 3(c),
it increases during the month of May and peaks in
August to September and starts reducing in the month
of October. The target function defined in equation (3)
can be defined for large fires as given in equation (9)
in terms of Burnt area (BA). The first term is positively
correlated as shown in Figure 2(b) and the second term
spread index is non-linear in terms of fire activity.

BAFWI > 50 ha = (BUI) + (ISI)x (9)

Where Initial Spread Index (ISI), Buildup Index(BUI) are
calculated from the weather logs [2] for a given fuel
type and is provided in the UCI dataset. The FWI index
is highly correlated with the number of fires and the
burnt area. This can be seen in the plot in Figure 4(b)
and 4(c), which shows 39 > FWI < 43 (very high)
in the case of large fires according to the training set
during peak months. FWI class means are calculated and
its distribution is multi-modal, which helps is accurate
classification of large fires. The class means for large fires
are shown in Figure 3(b) table.

B. F-score performance of FWI features

Large fires occurrence, which damage more than 50ha
in total, amounts for majority of the burnt area(ha), it
is a high priority to avoiding large fire incidents and
help forest conservation. As they are hard to detect and
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has a varying threshold it is also a cause of false alarms
[16]. Plotting all the correlated FWI components, which
relate to fire activity, Figure 4(c) shows that the peak
months(Aug, Sep and Oct) has a gradual increase of FWI
index and also correlated with large fire incidents. The
area of high fire activity is shown in yellow, which has
lowest false alarms rates for a given FWI threshold. The
lower-bound conditions for fire activity is shown in blue,
large fires in red and average FWI measured in green,
which has high rates of false alarms due to unpredictable
activity during the same time indicated in yellow.

The temporal attribute for large fire classification and
its FWI F-score is plotted in Figure 2(c), it shows that
large fires are invariant at F-score=0.9, and compara-
tively performs better than small fires with a relative
score of (≤ 0.8). The expected testing accuracy of event
classification will be close to optimal 95% performance.

VI. GENERALIZATION TESTING ERRORS

Machine learning [7] algorithms, when used with
density estimation and classification yields the lowest
error. This allows to provide a baseline analysis of the
measured attributes being used. Using Probably Approx-
imately Correct (PAC)[9,19] learning for a hypothesis
space |H|, which is finite then model can calculate the
minimum number of training samples for a model with
an accuracy (1 − δtrain) and minimum allowable error
εtrain. Its definition is given in Definition 2.

Definition 2 Sensor networks trains on unique patterns,
which are features present in the datastream, such attributes
take real valued numbers. The performance of a system can
be defined in terms of how well it can show the spatial and
temporal changes of the data measured and classify as valid
events. The learning algorithm depends on the distribution
of the dataset and how many training sets are needed for a
deterministic accuracy. Given the training sets is noiseless
we use the PAC learning criteria given by, for some joint
distribution p(x, y),where x is the input variable and y
represents the class label in, which class labels are determined
by some function y = g(x).

Ex,y[I(f(x;D) �= y)] < ε

A. Minimum number of samples for hypothesis testing

For a binary hypothesis of boolean literals the required
training samples m is given by

|H|eεm ≤ δtrain (10)

For a decision tree the minimum number of training sets
m of tree depth k is given by

m ≥ 69.0

εtrain

(
(2k − 1)(1 + log2 H) + (1 + log2

1

δtrain
)

)
(11)

From the given dataset, we can calculate m from equa-
tion (11) by substituting k = 4 as we have four

classes,|H| = 9, the average accuracy (1 − δtrain = 0.8)
and εtrain = 0.2. A 20% error rate is chosen due to
unknown distribution.

m ≥ 69.0

0.2

(
(24 − 1)(1 + log2 9) + (1 + log2

1

0.2
)

)

Then the minimum number of training support vectors
[18] can be computed as given below.

mSV ≥ 212

Definition 3 Measuring a sensor value x̄i exactly or within
a small error εsample and penalty of 1 for not getting the
correct value. This leads to the 0 − 1 loss function, which is
defined by

L|θ, x| =
{

0 if |x− θ| ≤ εsample

1 otherwise

We choose θ to minimize the function, for a given dataset
it can be shown that it is the mode.

Rθ = E|L(θ, x] =
n∑

i=0

P (xi)

= 1−
n∑

i=0

P (xi)

Definition 4 In practice errors are high in the case of sensor
data, due to the class-conditional distributions overlaps, in
which case exact separation of the training data can lead to
poor generalization. We therefore need a way to modify the
support vector machine so as to allow some of the training
points to be misclassified. To do this, we introduce slack
variables, ξn ≥ 0 where n = 1, ..., N, with one slack variable
for each training data point [20]. These are defined by ξ = 0
for data points that are on or inside the correct margin
boundary and ξ = |tn − y(xn)| for other points. Thus a
data point that is on the decision boundary y(xn) = 0 will
have ξ = 1, and points with ξ > 1 will be misclassified.
The exact classification constraints [19] are then replaced
with tny(xn) ≥ 1 − ξn, n = 1, ..., N , in which the slack
variables are constrained to satisfy ξn = 0. Data points for
which ξn = 0 are correctly classified and are either on the
margin or on the correct side of the margin. Points for which
0 < ξn < 1 lie inside the margin, but on the correct side
of the decision boundary, and those data points for which
ξn > 1 lie on the wrong side of the decision boundary and
are misclassified. The goal is now to maximize the margin,
while softly penalizing points that lie on the wrong side of
the margin boundary. We therefore minimize the equation

C

N∑
n=1

ξn +
1

2
||w||2

where C is the loss-function of the SVM.
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(a) Support vectors shown for SVM classifier. (b) FWI Multi-modal Density plot. (c) FWI<= 39(blue) and FWI>39(yellow).

Fig. 4. Positively correlated feature performance, shows all large fires(red) fall into the yellow region.
Other Test Yellow Region Blue Region Temporal-Small fires FWI-Large fires

Alarm H=Hit H=Hit H=311 H=69
No Alarm M=Miss M=Miss M=111 M=3

False Alarm F=False Alarm Z=Null hypothesis F=8 F=307
Table Alarms: Performance of classification with false alarm rates.

B. Misclassification cost of false alarms

While testing the performance of the machine learning
[7] algorithm, confusion matrix gives the error rates of
misclassified samples, which allows to find the sensitive-
ness of the system to false positives. False positives have
more significance when detecting large fires, which are
very rare and hard to detect. A cost function [8] can be
used, which is shown in the matrix below. The cost func-
tion penalizes misclassification of large fires. We define
a hit count in terms of precision to avoid false alarms
[16]. From the alarms Table part of Figure 4, the results
shows that when using FWI calculation the alarms are
very reliable for large fires and any misclassification is
penalized. While the false alarms are higher for small
fire detection the penalty of misclassification is lower by
design assumptions.⎛

⎜⎝
Decision made

LargeFire SmallF ire

LargeFire 0 1000

SmallF ire 1 0

⎞
⎟⎠

Cost function matrix for misclassification

VII. SIMULATION

Open-source workbench called WEKA [3] is a useful
tool to quantify and validate results, which can be re-
liably duplicated. WEKA can handle numeric attributes
well, so we use the same values for the weather data
from the UCI [4] repository datasets. The popular clas-
sification algorithms are cross-validated with a subset of
the data from the original dataset and the results are
discussed in this section. The error minimization for the
error generalization to avoid over-fitting the design is
discussed in Definition 1,2,3 and 4. The results can be
extended with real test data sets acquired from sensors
samples.

A. Data Mining analysis

In the pre-processing of the dataset, we use a high F-
score to design the classifier for better performance and
the training and testing errors are designed according
to PAC learning and sensor sampling as described in
section VII. The results from Table I shows training
and testing set accuracy using sensor data, small fires
have more accuracy with a higher bound performance of
(1−δtrain = 95%) and lower bound of (1−δtrain = 30%).
This results is consistent with the F-score ranking anal-
ysis. The true error is calculated for all the classes using
cross-validation of the training set, the performance is
very marginal 1−δtest = 56%, εsample−noise = 20% as the
distribution of all classes are not normally distributed
and prone to statistical errors [10], the attribute distribu-
tion is shown in Figure 3 and Figure 4.

B. FWI analysis

The second dataset uses the new standards established
by the Forest fire department as shown in Figure 3(b)
with redefined class labels. As seen earlier the majority of
training errors are large fire detection, where the sensor
data is not accurately estimated. The FWI index performs
well due to the features being positively correlated. The
results from Table II shows that training accuracy has
increased for hard to classify fires from the previous case.
We get (1−δtrain = 95%) classification accuracy with 417
support vectors, when using a polynomial kernel. This
result is also consistent with the F-score ranking of FWI
features.

C. Cost function analysis

In an effort to deal with outliers in the form of false
alarms a cost function is used when testing. The cost
function definition allows to lower 310 false alarms to
only 3 for the FWI dataset, it still has testing error in
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FWI Model Parameters Alarm Accuracy
Experiments Features Training Error True Error εoutlier

Class Attr. Performance SV AF SF MF LF err Outliers
Hypothesis 4 3 F-measure 517 45% 45% 90% 90% 4% -
Hypothesis 2 3 Subset 95 - - 95% 95% 5% -

SVM 1 1 FWI 517 - - 97% 100% 4% 72%
Class=Multi-class Attr=No. of attributes SV=Support Vectors AF=Accidental Fire SF=Small Fire MF=Medium Fire LF=Large Fire

err=Misclassification Outlier=False alarms

TABLE II
F-MEASURE PERFORMANCE FOR ALL TESTS USING FWI ATTRIBUTES.

terms of outliers, which accounts for εoutlier = 72%. The
reliability of the false alarms as discussed in Definition
4 rates is consistent with FWI features ranking as it is
invariant to any other features part of the dataset.

VIII. SUMMARY

In this work we discuss a knowledge framework
for tracking weather phenomenon and rare fire events.
The framework uses machine learning ranking using F-
score, data mining logs from automated weather sensors
and cost function to allow non-linearity in the form of
false alarms for determining the accuracy and allowable
errors of a event detection classifier. We effectively solve
the problem of unattended classification and outlier de-
tection by using sensor data and define a training frame-
work for the user to query the measured values within
an acceptable error. The performance of the classifier
shows that the classification accuracy can be increased
by adding inexpensive sensors to the original dataset
and small fires can be reliably predicted. Using FWI
dataset helps the fire fighting personal during the peak
fire months by accurately predicting the possibility of
large forest fires. Using inexpensive sensors in remote
areas can further help in knowledge discovery and
learning event patterns and classification. A user defined
cost function allows to choose the sensitiveness of the
false alarms and practically help the testing of the new
classifier before deployment.
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